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Table I. Some 1H NMR Parameters of 9, 10, 11, 1, 15, and 6 
at 100 MHz in CDCl3 (r Values; Internal Standard TMS)2 

Compd 

9 
10 
11 

1 
15 
6 

HA 

8.83 
9.24 
8.56 
6.18 
5.01 
3.48 

HB HC 

2.07 2.31 
1.88 2.22 
«- 2.06-2.34 -> 
2.13 2.69 
2.56 2.92 
3.69 3.28 

CH3 

7.29 
7.28 
7.26 
7.52 
7.64 
7.94 

«HA(d,J = 15-16Hz), HB (dd,/= 7.5-10, 15-16 Hz), HC (d, 
/ = 7.5-10 Hz), CH3 (s), for all compounds. 

(16,800), 292 (21,100), 386 (45,400), 552 sh (1050), 607 sh 
nm (580); i/max (KBr) 2130 m ( C = C ) , 970 s (trans C = C ) 
c m - 1 . Substance 1 was relatively stable, both in the solid 
state and in ether solution. 

It has been shown previously that the 1H N M R spectra 
of certain l,3-bisdehydro[14]annulenes are temperature de
pendent, due to rotation about the trans double bonds,19 

and this proved to be the case with the diacetate 7. On the 
other hand, the 1H N M R spectra of the dehydroannulenes 
9, 10, 11, and 1 were essentially temperature independent in 
the range —60 to 100°, and showed the macrocyclic rings to 
exist in the indicated conformations. 

Some 1H N M R parameters of various 1,3-bisdehydro-
[14]annulenes are given in Table I. As expected, the substi
tuted compounds 9, 10, and 11 are diatropic ("aromatic"), 
the inner H A protons resonating at unusually high field, and 
the outer HB , H c , and CH 3 protons at unusually low field. 
It has already been found that the diatropicity of a 1,3-bis-
dehydro[14]annulene is considerably reduced by fusion of a 
benzene ring (see IS in Table I) ,2 0 and almost completely 
eliminated by fusion of a [cjfuran ring (see 6 in Table I).5 

It is evident from the N M R spectrum of 1 that fusion of a 
second bisdehydro[14]annulene also reduces the diamag-
netic ring current of the bisdehydro[14]annulene, although 
to a lesser extent than benzene. The decreasing order of dia

tropicity of the macrocyclic ring of the various compounds 
in Table I (9, 10, 11 > 1 > 15 > 6) is presumably a reflec
tion of a decrease in the importance of different participat
ing Kekule structures of that ring. 
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Cycloadditions of Alkenylidenecyclopropanes with 
Acetylenic Dienophiles. An Exclusive Formation 
of the (2 + 2) Cycloadduct 

Sir: 

Alkenylidenecyclopropane (1) has been shown recently 
by Pasto and his coworkers to react with 4-phenyl-1,2,4-
triazoline-3,5-dione via a concerted [(^2 + T2 4- c2) + T2] 
pathway,1 while with chlorosulfonylisocyanate (CSI) 1 
reacts via a dipolar intermediate followed by cyclopropane 
ring opening and recyclization2 and with methylenemalon-
dinitriles3 and dichlorodifluoroethylene4 in a (2 + 2) fash
ion via a radical mechanism. In view of the above variety of 
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the mode of the cycloadditions of 1 we are intrigued by the 
behavior of 1 against acetylenic dienophiles. 

The reaction of 2,2,3,3-tetramethylisobutenylidenecyclo-
propane ( l a ) 5 with dimethyl acetylenedicarboxylate (2a) 
(1:1.5 molar ratio) in benzene at 90° for 19 hr afforded two 
products, 3a (mp 73-74°) and 4 (mp 46-50°) in 28 and 
15% yields, respectively, after work-up on a silica gel col
umn (benzene as eluent). Both products were 1:1 adducts 
on the basis of analysis and mass spectral data.6 In the 
N M R spectrum (CCU, 60 MHz) 3a revealed two allylic 
methyl proton signals at S 1.89 and 1.81 and four cyclopro-
pyl methyl signals at 5 1.35 (6 H) and 1.38 (6 H) besides 
two ester methyl signals at 8 3.76 and 3.69, while 4 had no 
allylic methyl signals but saturated methyl signals at 5 1.34 
(6 H) and 1.20 (12 H) as well as two ester methyl signals (8 
3.82, 6 H), and hence, 3a and 4 were assigned as a (2 + 2) 
adduct at C1-4 and C4-5 positions of la, respectively. Ir 
(KBr) (1750, 1720, 1670, and 1595 cm"1 for 3a; 1746, 
1720, 1698, and 1612 c m - 1 for 4) and uv (MeOH) absorp
tions (Xmax 289 (log e 4.19) for 3a and 296 nm (log « 3.96) 
for 4) were compatible with the assigned structures.7'8 

The reaction of la with chlorocyanoacetylene (2b) at 70° 
for 12 hr in benzene yielded only one (2 + 2) adduct, 3b, 
mp 90.5-92° in 33% yield, which had ir (KBr) absorptions 
at 2220, 1675, and 1585 cm - 1 ; uv (MeOH) absorption 
maximum at 278 nm (log e 4.37);9 and NMR (CDCl3) sig
nals at 8 2.10, 1.87, and 1.32 in a 3:3:12 ratio, supporting 
the assigned structure. 

On the other hand, unsymmetrically substituted 2-phen-
ylisobutenylidenecyclopropane lb reacted with 2a at 100° 
for 29 hr to afford one (2 + 2) adduct, 5a, as a viscid oil 
(39%).10 In the N M R spectrum10 5a revealed two methyl 
signals at 5 1.70 and 0.67. The appearance of one of the 
methyl signals at a higher field such as at 8 0.67 indicated 
the synfacial location of the methyl group to a phenyl ring 
supporting the assigned structure. 

^ -
la 

+ RC=CR' 

2a, R = R' = CO2Me 
b, R = CN; R' = Cl 

+ 
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The reaction of lb with 2b (80°, 20 hr) gave two 1:1 ad
ducts, 5b, mp 103-105°, and 6, mp 116-117° in 38 and 
24% yields, whose structures were evidenced by their spec
tral da ta ." 

In conclusion, the reactions of la,b with 2a,b gave exclu

sively (2 + 2) adduct but no [(„2 + T2 + c2) + T2) cycload-
duct. Since the examined acetylenic dienophiles have a lin
ear molecular geometry, a simultaneous in-plane (with re
spect to the cyclopropanering) attack of the dienophile -K 
system on C2 and on the in-plane p orbital of C4 may suffer 
from a considerable steric hindrance, and thus, [(x2 + x2 + 
a2) + T2] cycloaddition is prohibited.' However, a perpen
dicular attack of the acetylenes with an orthogonal orienta
tion (against the allene moiety of 1) on a perpendicular p 
orbital at C4 or on an in-plane p orbital at C5 should be 
much less sterically hindered, allowing the formation of (2 
+ 2) adduct.12 An antifacial (to the phenyl ring) attack on 
lb by 2a or 2b is obviously favored and the fact that 2a gave 
only 5a, while 2b afforded both syn- and antifacial adducts 
5b and 6 indicates a more crowded transition state geome
try of the synfacial attack of 2a than 2b. All of the above re
sults and the formation of two regioisomers 3a and 4 from 
la and 2a indicate that the molecular geometry of attacking 
dienophiles is also a very important factor as well as the 
substituents for determining the reaction path of 1 regard
less of the cycloaddition mechanism.13 '14 
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